
A mean-field-type approximation for the (t-J) model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 5137

(http://iopscience.iop.org/0953-8984/6/27/022)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 12/05/2010 at 18:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/27
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys.: Condens. Matter 6 (1994) 5137-5154. Printed in the UK 
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Abstract. The equations for a mean-field-type approximation in the (r-J) model are formulated 
in terms of a diagrammatic technique with Hubbard X-operators. With their help, equations for 
the order parameters are derived in ferromagnetic and antifmmagnetic phases of a metal. In 
both cases, two coupled order parameters exist a magnetization m and a gap A in the electron 
specmm They reRect a dual behaviour of a strongly correlated system: it is simultaneously an 
itinerant and a localized magnet Formulae for Curie temperature Tc and N&l temperamre TN 
are derived, from which the different name of ferromagnetic and antiferromagnetic ordering is 
explicitly Seen. For a simple cubic lattice the electron concenvation n dependences of Tc and 
TN are numerically calculated. It is shown that TN rapidly falls wilh deviation from half-filling, 
when n = 1. Magnetic correlation length 1. vx'ies at low temperaNre as - ( I  - ")-'I2. Such 
behaviour c m p o n d s  to that observed in experiments in copper oxide high-TC superconductors. 
The magnetic phase d m  is constructed on the ( l / U ,  n) plane. The equations for lhe wupled 
order panmeten are solved for T = 0 and the dependences of the order m and A MI 

n are presented in a wide interval of elemon concenhations. They indicate the gmwing degree 
of itinerancy with deviation from half-lilting. It is shown that the critical concentration U, for a 
crossover from itinerant magnetism to magnetism with localized magnetic moments should be 
a peculiar point where perturbation theory breaks down. 

1. Introduction 

The ( t - J )  model can be treated as a Limiting case of the Hubbard model with large value 
of on-site Coulomb repulsion U .  When U is much larger than the hopping electron matrix 
element r (U > t),  states of the system with two electrons of one site can be excluded in 
the second order of perturbation theory. As a result an effective Hamiltonian appears with 
antiferromagnetic exchange interaction J = t2/ U, and hopping of electrons over the lattice 
with more than one electron at a site is not allowed. This is just the ( r -J )  model. 

The Hamiltonians of the Hubbard model and the (1-1) model are written in the second 
quantization representation as 

for the Hubbard model 111 and 

for the (t-J) model [Z]. Here CL and cj, are Fermi operators of an electxon at site i and 
spin projection U =+, 4.; n;, = c&cic is the operator of electron number at site i with spin 
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U; ni = ni+ + n i ~  is the operator of the total number of electrons at site i; and Si is the spin 
operator. Factors (1 - nit) do not allow a second electron to be at a given site i. These 
factors create the major difficulties when one works with Hamiltonian (1.2). 

The Hubbard and ( t - J )  models are fundamental models for the study of itinerant 
magnetism in metals. In the case of weak Coulomb interaction (U << t ) .  the second 
term in (1.1) can be treated by perturbation theory in terms of the usual Fermi operators. 
To study different physical properties, one can use standard approximations in many-body 
theories. Particularly, for many years the random-phase approximation (RPA) result has been 
known [3]: 

Yu A l zyumv  et nl 

where x o ( k )  is the magnetic susceptibility of the free (band) electrons ( k  is 4-momentum). 
This result corresponds to summing up of looptype diagrams, and 

x 0 ( k )  = - n ( k )  (1.4) 

where n ( k )  is an elecixon loop with different spins for a particle and a hole. Formula (1.3) 
is the basis of the itinerant magnetism theory and its generalization, the theory of localized 
spin fluctuations (see the book by Moriya 141). 

In the case of strong Coulomb repulsion (U >> t ) .  one must apply Hamiltonian 
(1.2). In [5,6] we suggested expressing it in terms of the variables natural for this 
cas-X-operators-and developed a perturbation theory with these Hubbard operators. 
The generalized random-phase approximation (GRFA) was suggested and the magnetic 
susceptibility of the paramagnetic phase was calculated 151. The result resembles the 
structure of expression (1.3): 

However, the bare susceptibility x o ( k )  contains two contributions: 

x 0 W  = (no/2T)&,o - iW4. (1.6) 

Here the first term presents the Curie-type susceptibility - 1/T, while the second one gives 
the Pauli-type susceptibility. 

The quantities n, A, Q and Q, represent electron loops with different spins for a particle 
and a hole. Green lines correspond not to free electrons, as in the RPA case, but to electrons 
in the 'Hubbard-I' approximation partly taking into account the electmn correlations. These 
quantities correspond to four types of electron loops and they are equal to 

where 

(1.8) 
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is the energy of an electron in the lower Hubbard subband in the limit U + w, and f(r) 
is the Fermi function. 

The parameter no in (1.6) changes rapidly with electron concentration n. At zero 
temperature no = 0 when n < n, and no = 1 when n z n,. The critical concentration 
n, is determined by the condition: chemical potential is equal to zero at T = 0. In our 
approximation n, = 213 [5]. Owing to such behaviour of no, formula (1.5) together with 
(1.6) implies that the system undergoes a crossover at the point n = n, from itinerant 
magnetism to magnetism with localized magnetic moments. 

For a description of magnetically ordered phases with corresponding set of order 
parameters, a mean-field-type approximation (MFA) is usually applied. For the (r-J)  model 
with Hamiltonian (1.2). such an approximation is completely non-trivial, and the purpose of 
the present p a p  is the formulation of equations corresponding to such an approximation. 
In section 2 general diagram equations in MFA are suggested, and in section 3 on their 
basis equations for the order parameters for ferromagnetic and antiferromagnetic phases are 
derived. Curie T, and N6el TN temperatures are calculated numerically from these equations 
in section 4. Also the magnetic phase diagram on the ( t / U , n )  plane is constructed. In 
section 5 the equations for ferromagnetic and antiferromagnetic order parameters for zero 
temperature are solved numerically and their electron concentration dependence is found for 
the wide range of n. In section 6 the role of Gaussian fluctuations in  the behaviour of the 
quantity no is discussed in a self-consistent way. It is shown that the critical concentration 
n, appears to be a special poinr where perturbation theory breaks down. It means that all 
fluctuations in the system are relevant in the vicinity of n,. In section 7 the relation to the 
MFA for the Hubbard model, based on the high-dimensions limit d + 00, is discussed. 

2. Diagram equations for iw approximation in the (t-J) model 

The Hamiltonian of the (t-J) model (1.2) is expressed as a quadratic form of the X-operators 
IS]. It is also convenient to introduce a term with chemical potential p and external magnetic 
field H. Then N = NO + ?lint, where 

Here E, = -p -ah12 are the energies of on-site states for two spin projections U = +. -, 
and h = g f i B H .  

Let us introduce the electron and spin Matsubara-type Green functions: 

with all standard definitions [7]. A perturbation theory in the form of diagrammatic 
technique with X-operators was described by us in detail [5,6]. Its elements are fermion 
GO, and boson Do Green functions denoted by solid lines (with open and filled arrows for 
spins u =+, J.) and broken lines respectively. The coupling constants f and J are denoted 
by wavy and dotted lines. The diagrammatic technique includes also cumulants (semi- 
invariants), which are the statistical avenges of diagonal X-operator products. They are 



5140 

denoted by filled circles (representing these X-operators) placed in an oval. A first-order 
cumulant is the average (Xu*) and is denoted by one filled circle without an oval. 

When summing up graphical sequences in the technique with X-operators it is necessary 
to dress not only Green lines but cumulants as well. This is just a peculiarity of the MFA 
for the (t-J) model compared to the usual Fermi-liquid theory. So, we must consmct the 
self-consistent equations for a self-energy part E$ of the fermion Green function G,, and 
for the cumulant (XO"). In accordance with the general concept of MFA we have to select 
graphs for C, that do not depend on momentum. It is not difficult to see that such graphs 

Yu A Izyumov et a1 

are 

(incoming and outgoing Green lines G! are not included due to the determination of E+). 
A similar equation can be written for E, by interchange of the arrows' colour. A !.hick 
fermion line in (2.5) corresponds to the dressed Green function Gi, which must be obtained 
from a self-consistent equation (2.5) and a similar equation for E,. 

Cumulants in (2.5) represent 1 - (X,J (in the first graph) and (XJ (in the third 
graph). They must be found by summing up of graph series for (X") and (XJ with the 
same graph structures, which determines E+ and CL. Thus, in MFA the following graphs 
must be summarized 

+ .  a(-+ + . I .  + 6-6 
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A similar series must be written for (XY-). In the series (2.6) each external vertex 
corresponds to Xi". Notice that just the dressed Green functions enter the series for (X8?) 
and therefore equations (2.5). (2.6) and similar equations for the other spin projection 
constitute a system of coupled equations for the four quantities: E,, and (Xg"). 

One can see that the infmite graph series (2.6) presents analytically a Taylor expansion 
for a function with a shifted argument, given by the first term in the series, which means 
function (Xi") of zero approximation, which at zero value of the external field is 

(xp"), = e"/(l +;?ex) = (2.7) 

where x = @ / T .  The shift of argument in the Taylor expansion (2.6) is determined by the 
following four graphs of the 'first' approximation. Because of that, an analytical expression 
corresponding to the infinite series (2.6) can be written quite simply. 

3. Equations for the order parameters in ferromagnets and antiferromagnets 

Graph equations (2.5) and (2.6) are the basis for writing the equations for the order 
parameters in ferro- or antiferromagnetic phases. In a ferromagnet the average number 
of electrons nf  at a site with spin f is not equal to "1, and therefore the self-energy of an 
electron depends on spin a. Let us write an expression for the electron Green function in 
the form 

G,(k; i w d  = l/[iwk - (,(k) - A, +@I (3.1) 

where 

b ( k )  = (1 -n.?)E(k) (3.2) 

As = -JznC - - E & ( k ) f ( b ( k )  + A.?). 

and 

1 
(3.3) 

N ,  

Here &(k) = t exp(ik . A) is the band energy of an electron without Coulomb 
interaction. Factor (1 - na) describes correlation narrowing of a band, so L ( k )  is electron 
energy in the 'Hubbard-I' approximation. This approximation corresponds only to the first 
graph in expression (2.5) for E,,. Two other graphs lead to the frequency-independent 
correction As obeying the self-consistent equation (3.3). 

Let us write analytical equations corresponding to the graphical equation (2.6) for (Xp"). 
Taking into account that the graphical series (2.6) is a Taylor expansion, we present it in 
the following form: 

where h, = A , , / T .  This expression allows us to Write equations for the order parameter 
m and chemical potential p. With the help of the identity n, = (Xg"), we have according 
to the definitions: 
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Substituting expression (3.4) in these relations we can find explicit equations for m and p.. 
One should remember that, in an itinerant ferromagnet, the order parameter should be 

not only m but also the value of the gap A = A4 - A+ in the electron spectrum with 
different spin projections. With the help of equation (3.3) for A, and equation (3.5) for m 
and p ,  we come to the system of three coupled equations for order parameters A and m 
and also for chemical potential p: 

Yu A Izyumov et a1 

m = no (g) t d  (g) + [I.  (4) - I. (-$)I 
A - ms(k)  - A -““““’)I (3.7) ) - f 2 

and 

Here [(k) = (1 - n/Z)~(k)  is electron energy in the ‘Hubbard-I’ approximation for a 
paramagnetic phase. 

In a similar way, one can derive equations for the antifemmagnetic phase. An order 
parameter should be introduced by the relation 

(x++) - ( X T - )  = mpi (3.9) 

where pi = exp(iQ. Ri). and Q is the wavevector of magnetic structure. If we take 

Q = (n, x ,  x ) / ~  (3.10) 

then factor pi = f l ,  and one can see that the order parameter m is the magnetization of 
a sublattice. In such a system the electron Green function Go@) is a 2 x 2 matrix of the 
following form: 

where 

and 
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The graph equations (2.5) and (2.6) with electron Green function (3.11) lead to the 
following equations for m, A and p: 

(3.13) 

and 

In equations (3.6X3.8) and (3.13H3.15) we introduce a quantity 

no@) = 2eXcoshA/(l +2ercoshA) (3.16) 

which at A = 0 reduces to the expression (2.7) for no. The second parameter A is the gap 
in the spectrum of an electron moving in an antiferromagnetic matrix. 

The structure of equations (3.6K3.8) for a ferromagnet and equations (3.13H3.15) for 
an antiferromagnet are similar. Each equation has two contributions on the right-hand side: 
one reflects the localized and the other the itinerant character of magnetism in the ( t - J )  
model. The existence of two parameters also reflects the dual behaviour of the system. The 
parameter m is a local characteristic, being the magnetization of a sublattice, while 4 is a 
characteristic of the electron spectrum. Notice that, in the entirely localized (Heisenberg) 
model, only one order parameter m exists, but in the entirely itinerant model (with weak 
Coulomb repulsion) onIy parameter A exists. 

4. Curie and NCeI temperabms 

Neither of the order parameters m and 4 is primary, but both appear simultaneously. This is 
easy to see from the linearized equations. Equating to zero the determinant of these equations 
gives equations for Curie Tc and N6el TN temperatures. In the case of a ferromagnet the 
linearization of equations (3.6) and (3.7) leads to the following equation for Tc: 

where we introduce the notation 

(4.2) 

Here a prime means a derivative of the Fermi function with respect to the dimensionless 
argument. It is not difficult to see that the quantities (4.2) are particular values of the 
quantities n(k), A(k)  and @(k)  at zero frequency and zero wavevector, and Q(0,O) = 
M O ,  0). 

Equation (4.1) coincides with an equation determining poles of the dynamic magnetic 
susceptibility of paramagnetic phase at k = 0. The coincidence of the stability boundary 
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of ferromagnetic phase with the stability boundiuy of paramagnetic phase is the sign of a 
second-order phase transition. Let us rewrite equation (4.1) in the form: 

Yu A Izyumov et ai 

(4.3) 

This formula is valid while it gives positive values, and therefore the boundary of the 
ferromagnetic state is determined by the condition 

- Q(0,O) = J z .  (4.4) 

Quantities n, A and @ depend weakly on temperature in the whole temperature interval 
of electron concentration 0 < n < 1 except for a narrow vicinity of the point n = 1, where 
they contain a linear term in T. Because of that, on the right-hand side of (4.3) all quantities 
can be taken at T = 0; then (4.3) is an explicit expression for Tc. When T + 0 formula 
(4.2) reduces to 

where &(E)  is the density of states in the bare electron spectrum ~ ( k )  and fi  = p/(l- i n ) .  
With (4.3, expression (4.3) for TC can be written in the form: 

(4.6) 

from which the dependence of TC on n follows, if the electron concentration dependence 
of the chemical potential is known. From (4.6) one can see that TC vanishes because of the 
factor no when n c n, and also when np c n < 1 ,  where concentration nF is determined 
by equation (4.4). which cm be rewritten in the form 

( 1  - $)- ' f i2&($) = Jz. (4.7) 

Therefore ferromagnetism exists in the interval 

n, < n < np (4.8) 

where nF should be close to n = 1, because J (< f. At the limit U -+ CO, nF + 1. 

equation for TN of the following form: 
In the case of an antiferromagnet, the linearized equations (3.7) and (3.8) lead to the 

1 + [ % / ( ~ T N )  - n(Q, O)l[Q(Q, 0) - J z I  = 0 (4.9) 

where quantities n(Q, 0) and O(Q. 0) were introduced, which reduce at T + 0 to 

(4.10) 

@(Q, 0) = -- I la dsep&). 
1 - n / 2  mm 

(4.11) 
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These quantities are particular values of quantities i l ( k )  and 4 ( k )  for zero frequency 
and IC = Q, and A(Q,O) = Q ( Q , O )  = 0. Thus, equation (4.9) coincides with the 
equation determining the instability boundary of the paramagnetic phase with respect to the 
appearance of antiferromagnetism. From here it follows that 

(4.12) 

As in the case of ferromagnetism in the vicinity of n = 1, it is necessary to take into 
account a linear term in T in the expression for 4(Q, 0). It corrects formula (4.12) by the 
numerical factor (1 + In2)-'. 

Let us compare formulae (4.3) and (4.12) for Tc and TN. In both cases the denominators 
are positive values of the order of unity for all n. and therefore 

(4.13) 

These relations make clear the nature of ferromagnetic and antiferromagnetic ordering in the 
( r -J)  model. It is seen (if we note that @(O, 0) < 0) that ferromagnetic ordering has kinetic 
nature and the exchange interaction hinders it. The nature of antiferromagnetic ordering is 
quite different: it is caused by the exchange interaction, and electron motion only suppresses 
it. 

Thus, relations (4.13) determine the effective ferromagnetic and antiferromagnetic 
couplings. The factor no means that magnetic ordering occurs only with the appearance of 
localized magnetic moments. From formula (4.12) one can see that nesting does not play 
an essential role in the antiferromagnetic ordering, in contrast to the itinerant (Fermi-liquid) 
model. 

Now we present the results of numerical calculations of TC and TN for a simple cubic 
(sc) lattice from formulae (4.3) and (4.12). In figure 1 the quantities n, A and @ are 
given as functions of chemical potential. One can see Van Hove points and a logarithmic 
singularity of n(Q, 0). The dependence of chemical potential p upon n is shown in figure 2. 
The full curve presents the calculation with equation (3.8) or (3.15) for the paramagnetic 
phase in the limit T + 0. In both cases the equation for p reduces to the following: 

(4.14) 

At p = 0 the chemical potential has a jump because of the jump in the quantity no from 0 
to 1. The physical nature of this jump is connected with the change of electron states when 
passing the point p = 0. In it the system undergoes a crossover from itinerant magnetism to 
magnetism with localized magnetic moments. In the last case an electron spends most of the 
time at a site and behaves like a localized magnetic moment. At the same time the electron 
hops from one site to another, being a delocalized object. Thus when p z 0 an electron 
exists as a superposition of localized and delocalized states. This leads to two contributions 
on the right-hand side of equation (4.14). We mentioned already that a step-lie behaviour 
of no is a result of a too simple approximation ignoring fluctuations. Their participation 
should give somewhat smoothed behaviour of the quantity no and also chemical potential 
near the point p = 0. 



5 146 

-1.00 

-1.25 

Yu A Izyumov et al 

I 
I 

I 1  
I 1  
I 1  .. ! , I  

I 
_. ‘ I  I 

a 

Figure 1. Elect” loops as fuoctions of chemical potential for sc lattice ( L  = 6): full curves. 
‘ W O , O ) / z t ,  A(O,O)/u, n(O,O)/S; broken CWm, Q(Q,O) /z t ,  ll(Q.O)/zt. 

F i  2. Elemon ancentmion dependence of chemical potential fox sc lanice: full curve, p 
calculated fmm equation (4.14); broken curve, p calculated from equation (4.15). 

The broken curve in figure 2 gives the behaviour of chemical potential obtained from 
an equation very often used in the theories of snongly correlated systems [8-IO]: 

(4.15) 

This equation is usually applied when electron states are taken in the ‘Hubbard-I’ 
approximation. Such an approximation does not take into account the change of electron 
staw character with a change of electron concentration, and that is why it gives a smooth 
c w e  ~ ( n ) .  Hereafter when calculating Tc and TN we shall use equation (4.14) for the 
chemical potential. 

It is obvious that in the dependence of the electron loops on n there will be a jump, 
which leads to a jump for Tc and TN at p = 0, when n = nE = 2/3 (see figure 3). One can 
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see a sharp decrease of TN with deviation from half-filling. The changes of curves for TC 
and TN with increase of parameter K develop in opposite directions, as one would expect 
from relation (4.13). When K (exchange interaction) is increasing, TN is also increasing 
but TC is decreasing, and as a result when K 2 0.15 the antiferromagnetic state. dominates. 
In the close vicinity of half-filling, ferromagnetism is absent owing to the fast increase of 
density of states in the electron spectrum near the top of a band. Comparison of curves for 
TC and TN shows that there is a region of overlap of the ferromagnetic and antiferromagnetic 
states. This overlap is seen better in figure 4, where magnetic phase diagrams are shown for 
different temperatures. When T = 0 the ferromagnetic (F) and antiferromagnetic (A) phases 
occupy almost the whole part of the ( t / U ,  n) plane with n > n, = 2/3. When n < n, the 
paramagnetic phase is realized. Calculations for a square lattice lead to quantitatively close 
results, which is why we do not present them. Such coincidence is quite natural because 
the MFA is not sensitive to the space dimension. 

I 

0 

Figure3. Dependence of Curie (full curves) and 
N&I (broken curves) temperatures on elecaon 
wncentration at different values of parameter 
Y = J / r  = r / U  (A) x = 0, (6) K = 0.05, 
(C) I( = 0.10, (D) Y = 0.15, (E) Y = 0.20. (F) 
K = 0.B. pis determined from equation (4.14). 

Figut  4. Magnetic phase diagram on the @/U, n )  plane at 
different temperatures ( I  = T/zr): (A) I = 0, (E3 I = 0.02, 
(C) r = 0.04, (0) I = 0.06, @) I = 0.0% I* is determined 
from equation (4.14). 

We presented results based on equation (4.14) for /I. For comparison some results are 
given in figure 5 when equation (4.15) is used for chemical potential. An essential difference 
in the results shown in figures 3 and 5 occurs near the critical concentration nc. Beyond its 
vicinity the results for Tc and TN differ only quantitatively. It should be emphasized that 
equation (4.15) has no serious grounds. In its derivation is used an expression (Xy') through 
the electron Green function, based on the algebraic identity Xy = Xp'X?. However, one 
could use another identity Xpb = X,P*Xy and express (Xp") in terms of the boson Green 
function. It is possible also to use an arbitrary combination of both identities. With using 
such an approach, we face ambiguous results for representation of the average number of 
electrons n = (X'+) + (X,:-). Because of that, the direct calculation of (Xp') through 
graphical expansion is preferable, as was described in section 2. 
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a6 0.8 1.0 " 
Figure 5. Curie (full curves) and N&l (bmko curves) temperarums calculated with the chemical 
potential determined from equation (4.15) (curves have the same meaning as in figure 3). 

5. Behaviour of the order parameters 

In thii section we present the results of numerical solution of equations for the order 
parameters at T = 0 for the ferromagnetic and antiferromagnetic case. The solutions of 
equations (3.6)-(3.8) and (3.13)-(3.15) for the sc lattice are given in figures 6 and 7. A 
linear dependence of curve A in figure 6 means a state of saturated ferromagnetism m = n. 
For a ferromagnet including the exchange interaction, the linear behaviour of m with electron 
concentration persists in a wide interval of n except for the vicinity of point n = 1, where 
magnetization m + 0 when n --t 1. When n deviates from 1, both parameters m and A 
pass through maxima but these maxima lie on different ends of the interval n, < n e I. 

" 
Figure 6. Elecrmn concentration dependence of the order parametex m for ferromagnetic state 
(TUU curves) and antifmomagnetic state (brokn curves) (curves have the same meaning as in 
figure 3). 
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Figure 7. Electron concentration dependence of the order parameter A for femmgnetic state 
(full curves) and antiferromagnetic state (broken curves) (curves have &e same meaning as in 
figure 3). 

As for the antiferromagnet, one can see that at n = 1 the order parameter m = 1 at any 
K, that is the magnetization of a sublanice has the maximal value, while the gap A depends 
on K and correlates with the value of TN. It is possible to see this analytically from the 
analysis of equations (3.13H3.15) when T = 0 and n = 1. They have the form: 

J-ir  

where 

po = (l/cy)(pz - A ~ ) I / *  LY = L(1 2 - m2)’/’ 

From equation (5.3) one finds that po = Iz. Then from equations (5.1) and (5.2) it follows 
tllat 

m = 1 A/tz = 1.. (5.4) 

Let us return now to formula (4.12) for TN. When n = 1 we have @(e, 0) = n(Q, 0) = 0, 
no = 1, so we get 

(5.5) 

By comparison of (5.4) and (5.5) we find that at half-filling A = TN. However, this equality 
is approximate, because in equation (4.12) for TN at n N 1 it is necessary to take into account 
the linear km with respect to T. This decreases the value of TN by a factor C 2 1. Thus, 
when n = 1 the ratio of A to T should be 

I TN/fZ = 7K. 

A/TN = C 2 1. (5.6) 
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6. Role of Gaussian fluchrations 

Now we discuss the parameter no. which describes the crossover Erom itinerant magnetism 
to magnetism with localized magnetic moments. The step-like behaviour of no with electron 
concentration is the result of a rough approximation that ignores the spin and charge 
fluctuations. Earlier we have made an attempt to take into account the Gaussian fluctuations 
when calculating no, and have shown that they decrease no when n > n, but do not remove 
the finite jump of no at the point n = n, [ll]. However, these calculations were not 
self-consistent, which is why we reproduce them in a self-consistent approach. 

Let us consider the paramagnetic phase. The parameter no is expressed through a 
derivative of a zero-order cumulant (XTt) - (XJ with respect to the magnetic field. The 
derivative itself is a first-order cumulant [ll]. Consider a series including two-tail elements 
in all orders of approximation. It can be symbolically represented in the form: 

- +  +.... (6.1) 

The sum of this series is represented by the following integral [12j: 

Here p(x) is a function corresponding to the first term in the series (6.1), and x = y/T. 
Parameter 1 gjves a fluctuation change of the parameter x .  The magnitude 1 should be 
averaged with a Gaussian distribution function with dispersion 

AY= 

Formulae (6.1H6.3) have a general character. By choice of a proper cumulant 

n 
we obtain the following expression for the magnitude no dressed by the Gaussian spin 
fluctuations (we denote the dressed magnitude no by Go): 

2 e x  1 m 1 
no - = ( r A y ) I l z  ~mdvexp(- r12/Ay) l  + 2 2  coshq coshq 

where 

(6.4) 

Here d(k ,  0) is the denominator of the magnetic susceptibility (1 .5) at zero frequency. With 
use of (4.3) or (4.12) for the temperature of magnetic phase msi t ion T,,, formula (6.5) can 
be represented in the form: 

1 1  T, - bk2 
A y = - - - Z  

2no N T - Tm -b bk2' (6.6) 



Mean-field approximation for ( t - J )  model 5151 

The sum over k goes only over the vicinity of point k = 0 for a ferromagnet and k = Q 
for an antiferromagnet From (6.6) an estimation for the average quadratic fluctuation can 
be made: 

where ko is the cut-off wavevector and a is the lattice parameter. 
Expression (6.7) has to be substituted in (6.4). If in (6.7) we change the factor no to 

the dressed factor 20, we arrive at a self-consistent equation, which in the limit T << f i  is 
written in the form: 

*m 1 

The dependence of Eo on Sy is presented in figure 8. We see some decrease of Eo with 
parameter S y .  However, since S y  5 1, the change of 60 is small compared with the value 
no = 1 even in the self-consistent case. Thus the Gaussian fluctuations do not influence 
much the crossover near the point n,. At this point obviously all Ructuations are important 
and perturbation theory breaks down. 

bY 

Figure 8. Dependence of i,, on the strength of magnetic Gaussian fluctuations 6y: full curve, 
self-consisrent calculations; broken curve, perturbation theory calculations. 

7. Conclusions 

The main result of this paper is the derivation of mean-field equations for the ( t - J )  model. 
Being generally one of the simplest approximations in many-body theories, the MFA for 
the ( t - J )  model turned. out to be non-trivial because of the very complicated Hamiltonian 
taking into account the condition of not allowing two electrons to be at one site, Use of the 
representation of the Hamiltonian through the X-operators allows most effective retention 
of this condition in any concrete approximation. 

Conrrary to the usual Fermi systems, where MFA reduces to the formulation of some self- 
consistent equation for the self-energy part &, in the ( t - J )  model such an equation should 
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be accompanied by an equation for the average electron number n, at a site. However, n, 
is not expressed through the electron Green function but demands the summation of infinite 
series of diagrams for nr. These series, as we could see, converge to a simple analytical 
form allowing us to write a coupled system of equations for n, and E,. 

From the general diagram equations for C, and n, the equations for the order parameters 
m and A follow that describe ferromagnetic and antiferromagnetic phases. The presence 
of two coupled order parameters appearing simultaneously reflects the dual behaviour 
of the strongly correlated system being an itinerant and a localized magnet at the same 
time. It is remarkable that the boundary of magnetically ordered phase stability coincides 
with the boundary of the paramagnetic phase instability with respect to corresponding 
magnetic ordering. This implies that a phase transition from paramagnetic phase to 
ferromagnetic or antiferromagnetic phase is a second-order phase transition. It means that 
the same connection exists between GRPA and MFA for the (t-J) model as between RPA 
and MFA in the usual Fermi system theory. In both cases the conditions of zero-frequency 
magnetic susceptibility of paramagnetic phase divergence coincide with the conditions for 
the magnetic phase transition, which follow from the zero value of the magnetic order 
parameters determined by MFA. 

From ow approach, reasonable results follow for the magnetic phase transition 
description, particularly the electron concentration dependence of TC and TN. One 
circumstance is unsatisfactory: the behaviour of the system near the critical electron 
concentration n,, where the system undergoes a crossover from itinerant magnetism to 
magnetism with localized magnetic moments. This crossover is too sharp with change of 
no from 0 to 1. As a result of such behaviour of no, the chemical potential jumps at the 
point n = nc. which lends to jumping of curves on the magnetic phase diagram. Certainly 
such step-like behaviour of no is a result of ignoring the spin and charge fluctuations in the 
system. However, our analysis has shown that even a self-consistent approach taking into 
account the Gaussian fluctuations of spins does not eliminate this jump. It is clear that near 
n, all strongly interacting fluctuations are important, and at the point n, perturbation theory 
breaks down. In this sense, this is a peculiar point as a second-order phase transition point or 
as a mobility edge in the theory of localization. For this reason in all the presented figures 
the vicinity of this point should be cut off. Beyond its vicinity the difference in results 
based on the different equations for chemical potential are not too contradictory. Rigorous 
calculation of critical concentration n,, as a point of the crossover, and the behaviour of 
physical quantities in its vicinity appear to be a challenging theoretical problem. 

Another, more solvable but nevertheless rather difficult, problem for the ( t - J )  model 
is the calculation of the fluctuation (spin-wave) spectrum in a magnetically ordered phase. 
For its solution it is necessary to calculate the magnetic susceptibility for ferromagnetic 
and antiferromagnetic phases. Then its poles should give the spin-wave spectrum. For this 
it is necessary to use equations for magnetic order parameters characterizing the ground 
state of a magnetically ordered phase. Such equations have been obtained in the present 
paper, and the dependence of the order parameters upon electron concentration have been 
calculated numerically. Now the second step should be taken, namely, the calculation of 
the fluctuation spectrum above this ground state. Such calculations are now in progress. 

One of the preliminary results of such study concerns the contraction of Mp region for a 
ferromagnetic state due to instability of spin waves [13], Particularly, for the case U = CO 

a ferromagnetic state becomes unstable already at values n higher than n, = 2/3. Similarly 
to the case of the weak Coulomb interaction in the strong U limit, quantum fluctuations 
decrease the tendency of a system to ferromagnetism. Probably we shall have the same 

Yu A I ~ u m o v  et a1 
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result for an antiferromagnetic state. Thus in the strong U limit a general feature of MFA 
to overestimate the tendency to magnetic ordering will persist. 

Generally the problem of ferromagnetism in the strong U limit is still not resolved yet. 
The ferromagnetic state, expected from Nagaoka’s rigorous result for one hole in a half-filled 
case [141, tumed out not to be thermodynamically stable [I51 at finite concentration of holes, 
However, ferromagnetism was found for several non-cubic lattices in the case of the Hubbard 
model (see 1161 and references therein). Some discussion of the various controversial results 
about ferromagnetism in the Hubbard and ( t - J )  models has been presented in our earlier 
paper 1171, but we intend to give an up-to-date discussion of this problem soon in connection 
with the spin-wave analysis of the ( t -J )  model [13]. 

In conclusion, we briefly discuss the status of a mean-field-type approximation approach 
suggested in the present paper from the point of view of exact solutions for the itinerant 
strongly correlated models obtained recently from the limit of infinite dimension ( d  = CO) 

[181. ‘In this situation the exact solution of a fermionic lattice model in the limit d --f 03 

provides an ideal mean-field solution for these models which has all the desired features of 
a comprehensive MP theory: it is a self-consistent, conserving approximation which is valid 
for all input parameters and can be systematically improved by taking 1 Jd  corrections into 
account’ [19]. 

According to this statement, the MF theory for the ( f - J )  model should be based on the 
limit d + 03. If we consider the ( f - J )  model as a limiting case U >> t of the Hubbard 
model, the MF theory for the ( t - J )  model should appear from the Hubbard model in the 
limit d + CO. One has to remember, however, that the Hamiltonian of the ( t - J )  model is 
derived from the Hamiltonian of the Hubbard model only near half-filling (1 --n << 1) [ZO]. 
To treat the ( t - J )  model as a fundamental model with independent parameters t and J, the 
MF theory should be derived directly from the d --f CO limit of the ( f - J )  model. Notice 
that expansion over l / d  was applied recently to study a hole in the ( t - J )  model [Zl]. Now 
we know that in the d -+ CO limit the Hubbard model maps onto a single impurity model 
with appropriate parameters, which can be exactly solvable numerically [22-261. 

Our MF-type approximation is not the MF theory in the statistical mechanics sense 
(similarly the Hamee-Fock approach for a Fermi liquid is not the MF theory in that sense). 
However, our self-consistent approach is convenient for two reasons: first, it is an analytical 
one; and, second, it allows easy introduction of order parameters. For the ( t - J )  model our 
m-type approach is  valid for the interval of electron concentration n, < n < 1 besides 
its two edges: the vicinity of the critical concentration n, and half-filling. Inside of this 
interval the ( t - J )  model describes the dual behaviour of a system with both itinerant and 
localized features. 
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